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Abstract. A one-dimensional (1D) quasicrystal (QC) is defined as a three-dimensional body
which is periodic in thex–y plane and quasiperiodic in the third dimension. Knowing that
the possible symmetry operations for a 1D QC are 1, 2, 3, 4, 6, m, 1̄ (inversion), 2h (horizontal
twofold rotation) andmh (horizontal mirror reflection), 31 possible point groups of 1D QCs
have been deduced. These 31 point groups are divided into ten Laue classes and six systems.
Considering screw (only 21h) and glide (onlya, b andnh) operations, 80 possible space groups
of 1D QCs have also been obtained. According to our generalized elasticity theory of QCs, the
elastic behaviours, including independent elastic constants and invariants, for each Laue class
of 1D QCs have been discussed.

1. Introduction

Since the discovery of three-dimensional (3D) icosahedral quasicrystal (QCs) in Al–Mn
alloys (Shechtmanet al 1984), 3D cubic QCs (Fenget al 1989, Wanget al 1994), two-
dimensional (2D) QCs (Bendersky 1985, Ishimasaet al 1985, Wanget al 1987), and
one-dimensional (1D) QCs have been discovered in succession. A 1D QC is defined as a
3D body which is periodic in thex–y plane and quasiperiodic in the third direction. Merlin
et al (1985), Huet al (1986), Fenget al (1987), Terauchiet al (1988) and Chenet al
(1987, 1989) prepared a Fibonacci sequence with alternating layers of GaAs and AlAs or
Al 0.5Ga0.5As, where the GaAs and AlAs were grown by molecular-beam epitaxy. Heet al
(1988) found a 1D QC derived from the 2D decagonal QC in rapidly solidified Al–Ni–Si,
Al–Cu–Mn, and Al–Cu–Co alloys. Tsaiet al (1992) and Yanget al (1996) reported the
discovery of some stable 1D QCs in the Al–Cu–Fe–Mn system. There have also been
some theoretical studies about 1D QCs; Miyazaki and Inoue (1990) calculated the optical
reflectivity of the semiconductor Fibonacci superlattice. Lele and Mandal (1990) proposed
a method of generating a 1D QC by distorting the six-dimensional supercubic lattice and
the icosahedral basis vectors along the threefold axis. The point group of such a 1D QC is
3̄. Zhang and Kuo (1990) described various 1D QCs by adding linear phason strain to the
decagonal QCs. All the 1D QCs related to decagonal QCs (Heet al 1988, Zhang and Kuo
1990, Tsaiet al 1992) belong to the orthorhombic system. One may ask how many point
groups, space groups and systems can exist for 1D QCs. In sections 2 and 3, we derive all
the possible point and space groups of 1D QCs.

The field of linear elasticity theory of QCs has been investigated for years. Levineet al
(1985) and Socolar (1989) derived expressions for quadratic invariants and elastic energies
of icosahedral and planar pentagonal, octagonal and dodecagonal QCs. Dinget al (1993)
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proposed a generalized elasticity theory and obtained Hooke’s law and the equilibrium
equations for QCs. Yanget al (1993) discussed the linear elasticity equations and elastic
energy for the cubic QS. Yanget al (1995a, b) and Huet al (1996) discussed the linear
elastic behaviour of 2D QCs. Nevertheless, there has been no systematic report in this field
for 1D QCs. In section 4, we shall discuss the elastic behaviour, including independent
elastic constants and invariants, for each point group of the 1D QCs. Some discussion is
given in section 5.

2. Possible point groups for one-dimensional quasicrystals

The possible symmetry elements for 1D QCs are then and n̄ axes (n = 1, 2, 3, 4 and 6)
along thez direction which is perpendicular to thex–y periodic plane, and also the twofold
axes 2h (horizontal twofold rotation) and̄2h = m (vertical mirror reflection) in the periodic
plane. Other axes (n = 5, 7, 8, . . .) are incompatible with the periodicity in thex–y plane.
Moreover, any axis, except 1, 1̄ and the horizontal twofold axes 2h and 2̄h = m, must be
perpendicular to the periodicx–y plane. Otherwise the periodicity in thex–y plane would
be transformed to the third direction outside thex–y plane and the studied body would
become a 3D crystal. The point symmetry operations for 1D QCs may be divided into
two types for which the first-type operations are proper rotationsn (n = 1, 2, 3, 4 and 6)
about the vertical axis and reflectionsm across vertical mirror planes, and each second-
type operation is a compound operation which is a product of inversion1̄ and one of the
first-type operations. For example, the following operations belong to the second type:
mh = 1̄ · 2= 2̄, n̄ = 1̄ · n (n = 3, 4, 6), 1h = 1̄ ·m.

It is well known (Wang and Kuo 1990) that point groups consisting of only the first-type
operations 1, 2, 3, 4, 6 andm are the following ten 2D crystallographic point groups:

1, 2, 3, 4, 6, m,2mm, 3m, 4mm, 6mm (1)

which are listed in the first column of table 1. In the present paper we use the conventional
Hermann–Mauguin symbols (Hahn 1983) to describe the point and space groups.

Table 1. Derivation of 31 point groups for 1D QCs (S represents subgroup of index 2 ofH ).

H {1, 1̄} ⊗H S H ′ = S + 1̄{H/S}
1 1̄ — —
2 2/mh 1 mh
3 3̄ — —
4 4/mh 2 4̄
6 6/mh 3 6̄
m 2h/m 1 2h
2mm mmmh 2 2h2h2

m 2hmmh
3m 3̄m 3 32h
4mm 4/mhmm 4 42h2h

2mm 4̄2hm
6mm 6/mhmm 6 62h2h

3m 6̄m2h

Since the product of any two second-type operations is a first-type operation, we
conclude from group theory (Wang and Kuo 1990) that any groupH ′ containing second-
type operations has a subgroupS of index 2 which consists of all the first-type operations
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in the groupH ′:

H ′ = S + (H ′/S) (2)

where

H ′ = {1, h2, . . . , hs, h
′
s+1, . . . , h

′
2s}

S = {1, h2, . . . , hs}
and

H ′/S = {h′s+1, h
′
s+2, . . . , h

′
2s} = h′s+j S (3)

with h′s+j = 1̄ · hs+j (j = 1, 2, . . . , s) ∈ H ′/S being second-type operations andhs+j their
corresponding first-type operations.

When someh′s+j in equation (3) itself is an inversion operation1̄, then we can rewrite
(2) as a direct product:

H ′ = S × {1, 1̄} (4)

whereS is one of the 2D crystallographic point groups listed in (1). Hence we can derive
ten point groups for 1D QCs as follows:

1̄, 2/mh, 3̄, 4/mh, 6/mh, 2h/m,mmmh

(
= 2h
m

2h
m

2

mh

)
, 3̄m

(
= 3̄

2h
m

)
,

4/mhmm

(
= 4

mh

2h
m

2h
m

)
, 6/mhmm

(
= 6

mh

2h
m

2h
m

)
(5)

which are listed in the second column of table 1.
When the cosetH ′/S in (3) does not contain the inversion operation1̄, then we can

conclude from group theory (Wang and Kuo 1990) that the group

H = {1, h2, . . . , hs, hs+1, . . . , h2s} (6)

is isomorphic toH ′. Hence we can derive other point groups for 1D QCs by finding
subgroupsS of index 2 from the ten point groupsH as listed in the third column of table 1,
and then changing all the operationshs+j ∈ H/S into corresponding second-type operations
h′s+j = 1̄ · hs+j . In this way we obtain the other 11 point groups:

mh, 4̄, 6̄, 2h, 2h2h2, 2hmmh, 32h, 42h2h, 4̄2hm, 62h2h, 6̄m2h (7)

which are listed in the fourth column of table 1.
These 31 point groups for 1D QCs may also be derived by the following considerations.

The possible operationsn, n̄ (n = 1, 2, 3, 4 and 6), 2h and2̄h. = m for 1D QCs all belong
to crystallographic point operations; hence any point group of 1D QCs must be one of the
32 crystallographic point groups. By excluding five cubic point groups 23, m3̄, 432, 4̄3m
and m3̄m which contain oblique axes and considering 2 and 2h,m and mh,, 2/mh and
2h/m, 2mm and 2hmmh as different point groups, we again obtain 31 point groups for 1D
QCs.

These 31 point groups may be divided into six systems and ten Laue classes as shown
in the first three columns of table 2. According to Yanget al (1995a), the elastic behaviours
are the same for point groups belonging to the same Laue class.
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3. Possible space groups for one-dimensional quasicrystals

Since a 1D QC allows translations only along thex–y periodic plane, the allowable centring
types are primitive (P ) andC-face-centred (C) cells. Moreover, besides the point symmetry
elementsn, n̄, 2h andm mentioned in section 2, other allowable elements are horizontal
twofold screw axes 21[100] and 21[010], vertical glide planesa[010] andb[100], and also
horizontal glide planesa[001], b[001] andn[001]. Therefore, space groups for 1D QCs are
selected from 230 3D crystallographic space groups (Hahn 1983) according to the following
procedures:

(1) Exclude all the cubic space groups because they contain oblique axes.
(2) For each monoclinic and orthorhombic space group, consider various settings (Hahn

1983) of the same unit cell. For example, for the space groupPmna No (53), consider
also its other settings:Pnmb, Pbmn, P cnm,Pncm andPman, which are not equivalent
for 1D QCs.

(3) Exclude all the space groups of A-face-; B-face-; body- and all-face-centred and
rhombohedral (R) cells, and all the space groups containing intrinsic translations along the
z direction, e.g.n[010](t = [1/2, 0, 1/2]) andn[100](t = [0, 1/2, 1/2]). Hence, the above
space groupsPmna, Pnmb, P cnm and Pncm are excluded and onlyPbmn and Pman
remain as space groups of 1D QCs.

In this way we have derived 80 space groups for 1D QCs as listed in the fifth column
of table 2. The sixth column lists the sequence numbers of these space groups in the
International Tables for Crystallography(Hahn 1983).

It should be noted that these 80 space groups for 1D QCs are exactly the layer groups
G3

2 as discussed by Vainshtein (1981) and Wang and Kuo (1990).

4. Linear elasticity behaviour of one-dimensional quasicrystals

In the case of crystals, all order invariants of all crystal classes can be easily obtained
according to group representation theory and have been tabulated by Teodosiu (1982). In
section 2, we have derived all the possible 31 point groups of 1D QCs. The quadratic
invariants of a QC consist of phonon strain termsEijEkl which are exactly those of the
crystal with the same point group, phason strain termsWijWkl and coupling termsEijWkl ,
whereEij = (∂iuj+∂jui)/2,Wij = ∂jwi , andu andw are phonon and phason displacement
vectors, respectively.

A 1D QC can be described as a 3D cut of a periodic structure in four-dimensional (4D)
hyperspace; hence a displacement vector in 4D space may be expressed as the direct sum
of the phonon displacementu in 3D physical subspace and phason displacementw in 1D
perpendicular subspace corresponding to the quasiperiodic direction of the 1D QC. This
indicates that the phason displacement vectorw for 1D QCs has only one componentw3

and hence there are only three phason strainsW31,W32 andW33 for 1D QCs compared with
nine phonon strainsEij (i, j = 1, 2, 3). Therefore, in the elastic constant matrix [CKR]
(Ding et al 1993), the matrix [C] is just the same as the stiffness elastic constant matrix of
the corresponding crystal structure, [K] is a 3× 3 matrix and [R] is a 9× 3 matrix due to
the possible coupling invariants betweenEij andW3l(Rij3l). From the viewpoint of group
representation theory, both∂j anduj transform under a 3D representation0A, whilew3 does
so under an 1D representation0B . The latter may be an identity representation, or sometimes
be a 1D non-identity representation with a character 1 for the first-type operations and a
character−1 for the second-type operations. The number of independent elastic constants
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for every point group can be calculated by the method of Yanget al (1994). The quadratic
elastic invariants are then derived by the method described by Yanget al (1995b).

According to the above rules and the generalized elasticity theory (Dinget al 1993),
we shall give all the quadratic invariants, elastic energies, Hooke’s law and equilibrium
equations for 1D QCs. As a general form, the elastic energy, generalized Hooke’s law and
equilibrium equations of 1D QC can be written as follows: the elastic energy density is

f = 1
2[E11, E22, E33, E23, E31, E12, E32, E13, E21,W33,W31,W32]

[
C R

RT K

]



E11

E22

E33

E23

E31

E12

E32

E13

E21

W33

W31

W32



(8)

the generalized Hooke’s law is

Tij = CijklEkl + Rij3lW3l (i, j, k, l = 1, 2, 3) (9)

H3j = Rkl3jEkl +K3j3lW3l (10)

and the static equilibrium equations are

Cijkl∂j ∂luk + Rij3l∂j ∂lW3+ fi = 0 (11)

K3j3l∂j ∂lW3+ Rkl3j ∂j ∂luk + g3 = 0. (12)

4.1. Triclinic system

In the triclinic 1D QC system, the point group may be 1 or1̄, and the invariants up to
quadratic order includeE11, E22, E33, E23, E31, E12, W31,W32 andW33 and their mutual
products. It is clear that there arenC = 21 independent elastic constants in [C] as in
the triclinic crystal system,nK = 6 in [K] because ofK3j3l = K3l3j , and nR = 18 in
[R] becauseRij3l = Rji3l . Therefore, the total number of independent elastic constants
nC + nK + nR = 21+ 6+ 18= 45 (listed in the fourth column of table 2).

4.2. Monoclinic system

In the monoclinic 1D QC system, there are two Laue classes, i.e. 2/mh(2, mh, 2/mh) and
2h/m(2h,m,2h/m). The unique axis of the point groups 2, mh and 2/mh is the z axis;
hence the invariants up to quadratic order are

E11, E22, E33, E12, E
2
23, E

2
31, E23E31;W33,W

2
31,W

2
32,W31W32;E23W31,

E23W32, E31W31, E31W32. (13)
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Table 2. Systems, Laue classes, point groups, numbers of independent elastic constants and
space groups for 1D QCs.

Numbers of Space group
independent
elastic constants Hermann–Mangnin Number in

System Laue class Point group nC + nK + nR symbol International Tables

Triclinic 1̄ 1 21+ 6+ 18 P1 1
1̄ P 1̄ 2

Monoclinic 2/mh 2 13+ 4+ 8 P112 3
mh P11m 6

P11b 7
2/mh P112/m 10

P112/b 13
2h/m 2h 13+ 4+ 10 P121 3

P1211 4
C121 5

m P1m1 6
P1a1 7
C1m1 8

2h/m P12/m1 10
P121/m1 11
C12/m1 12
P12/a1 13
P121/a1 14

Orthorhombic mmmh 2h2h2 9+ 3+ 5 P222 16
P2122 17
P21212 18
C222 21

mm2 Pmm2 25
Pbm2 28
Pba2 32
Cmm2 35

2hmmh P2mm 25
P21am 26
P21ma 26
P2aa 27
P2mb 28
P21ab 29
P2an 30
P21mn 31
C2mm 38
C2mb 39

mmmh Pmmm 47
Pmaa 49
Pban 50
Pbmm 51
Pmma 51
Pbmn 53
Pbaa 54
Pbam 55
Pmab 57
Pmmn 59
Cmmm 65
Cmma 67
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Table 2. (Continued)

Numbers of Space group
independent
elastic constants Hermann–Mangnin Number in

System Laue class Point group nC + nK + nR symbol International Tables

Tetragonal 4/mh 4 7+ 2+ 4 P4 75
4̄ P 4̄ 81
4/mh P4/m 83

P4/n 85
4/mhmm 42h2h 6+ 2+ 3 P422 89

P4212 90
4mm P4mm 99

P4bm 100
4̄2hm P 4̄2m 111

P 4̄21m 113
P 4̄m2 115
P 4̄b2 117

4/mhmm P4/mmm 123
P4/nbm 125
P4/mbm 127
P4/nmm 129

Trigonal 3̄ 3 7+ 2+ 6 P3 143
3̄ P 3̄ 147

3̄m 32h 6+ 2+ 4 P312 149
P321 150

3m P3m1 156
P31m 157

3̄m P 3̄1m 162
P 3̄m1 164

Hexagonal 6/mh 6 5+ 2+ 4 P6 168
6̄ P 6̄ 174
6/mh P6/m 175

6/mhmm 62h2h 5+ 2+ 3 P622 177
6mm P6mm 183
6̄m2h P 6̄m2 187

P 6̄2m 189
6/mhmm P6/mmm 191

By comparison with equation (8), we obtain the non-zero elastic constants as follows:

C1111, C2222, C3333, C1122, C1133, C1112, C2233, C2212, C3312, C3232, C3231, C3131, C1212

K3333,K3131,K3232,K3132 (14)

R1133, R2233, R3333, R1233, R2331, R2332, R3131, R3132.

Therefore, the total number of independent elastic constants is

nC + nK + nR = 13+ 4+ 8= 25. (15)

If the unique axis lies in the horizontal plane, e.g. along they axis, then invariants of
the point groups 2h,m, and 2h/m are

E11, E22, E33, E31, E
2
23, E

2
12, E12E23;W33,W31,W

2
32;E23W32, E12W32 (16)
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and the corresponding non-zero elastic constants are

C1111, C2222, C3333, C1122, C1133, C1131, C2233, C2231, C3331, C2323, C1212, C3131, C2312

(nC = 13)

K3333,K3131,K3331,K3232 (nK = 4) (17)

R1133, R2233, R3333, R3133, R1131, R2231, R3331, R3131, R2332, R1232 (nR = 10).

4.3. Orthorhombic system

The point groups 2h2h2, mm2, 2hmmh andmmmh in this system belong to the same Laue
class. The invariants for them are

E11, E22, E33, E
2
23, E

2
31, E

2
12;W33,W

2
31,W

2
32;E23W32, E31W31 (18)

and the non-zero elastic constants are

C1111, C2222, C3333, C1122, C1133, C2233, C2323, C3131, C1212 (nC = 9)

K3333,K3131,K3232 (nK = 3) (19)

R1133, R2233, R3333, R2332, R3131 (nR = 5).

4.4. Tetragonal system

Two Laue classes, i.e. 4/mh (4, 4̄ and 4/mh) and 4/mhmm (4̄2hm, 4mm, 42h2h and
4/mhmm), belong to this system. For the Laue class 4/mh (4, 4̄ and 4/mh), the invariants
are

E11+ E22, E33, E
2
23+ E2

31, E
2
12, E11E22, E12(E11− E22);W33,W

2
31+W 2

32;
E23W32+ E31W31, E23W31− E31W32 (20)

and the non-zero elastic constants are

C1111= C2222, C3333, C2323= C3131, C1212, C1122, C1133= C2233, C1112= −C2212 (nC = 7)

K3333,K3131= K3232 (nK = 2) (21)

R1133= R2233, R3333, R2332= R3131, R2331= −R3132 (nR = 4).

For the Laue class 4/mhmm (4̄2hm, 4mm, 42h2h and 4/mhmm), the invariants are

E11+ E22, E33, E
2
23+ E2

31, E
2
12, E11E22;W33,W

2
31+W 2

32;E23W32+ E31W31 (22)

and the non-zero elastic constants are

C1111= C2222, C3333, C1133= C2233, C1212, C1122, C2323= C3131 (nC = 6)

K3333,K3131= K3232 (nK = 2) (23)

R1133= R2233, R3333, R2332= R3131 (nR = 3).

4.5. Trigonal system

Two Laue classes, i.e.3̄(3, and3̄) and3̄m (3m, 32h and3̄m), belong to the trigonal 1D QC
system. For the first two point groups 3 and3̄, the invariants include

E11+ E22, E33, E11E22− E2
12, E

2
23+ E2

31, (E11− E22)E31− 2E23E12, (E11− E22)E23

+2E31E12;W33,W
2
31+W 2

32; (E11− E22)W31− 2E12W32, (E11− E22)W32

+2E12W31, E23W32+ E31W31, E23W31− E31W32 (24)
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and the non-zero elastic constants are

C1111= C2222, C3333, C2323= C3131, C1122, C1133= C2233, 2C1212= (C1111− C1122), C1123

= − C2223= C3112, C2231= C2312= −C1131 (nC = 7);
K3333,K3131= K3232 (nK = 2) (25)

R1133= R2233, R3333, R2332= R3131, R2331= −R3132, R1131= −R2231= −R1232, R1132

= − R2232= R1231 (nR = 6).

For the latter three point groups 32h, 3m and 3̄m, with 2h ‖ OX1 andm ⊥ OX1, the
invariants(E11−E22)E31− 2E23E12, (E11−E22)W31− 2E12W32 andE23W31−E31W32 in
(24) disappear. Therefore, in (25), we haveC1131= 0, R1131= 0 andR2331= 0, and hence
nC = 6, nK = 2 andnR = 4.

4.6. Hexagonal system

Two Laue classes, i.e. 6/mh(6, 6̄ and 6/mh) and 6/mhmm (62h2h, 6mm, 6̄m2h and
6/mhmm), belong to the hexagonal 1D QC system. For the first three point groups, the
invariants are

E11+ E22, E33, E11E22− E2
12, E

2
23+ E2

31;W33,W
2
31+W 2

32;E23W32+ E31W31, E23W31

−E31W32 (26)

and the non-zero elastic constants are
C1111= C2222, C3333, C2323= C3131, C1122, C1133= C2233, 2C1212

= (C1111− C1122) (nC = 5)

K3333,K3131= K3232 (nK = 2)

R1133= R2233, R3333, R2332= R3131, R2331= −R3132 (nR = 4).

(27)

For the latter four point groups with 2h ‖ OX1 andm ⊥ OX1, the invariantsE23W31−E31W32

in (26) disappear. Therefore, their elastic constants are the same as (27) except that
R2331 = 0. As an example, we give the actual expressions for the elastic energy,
generalized Hooke’s law and equilibrium equations for these four point groups, according
to equations (8)–(12).

The elastic energy density is

f = 1
2[E11, E22, E33, 2E23, 2E31, 2E12,W33,W31,W32]

×



C11 C12 C13 0 0 0 R1 0 0

C12 C11 C13 0 0 0 R1 0 0

C13 C13 C33 0 0 0 R2 0 0

0 0 0 C44 0 0 0 0 R3

0 0 0 0 C44 0 0 R3 0

0 0 0 0 0 C66 0 0 0

R1 R1 R2 0 0 0 K1 0 0

0 0 0 0 R3 0 0 K2 0

0 0 0 R3 0 0 0 0 K2





E11

E22

E33

2E23

2E31

2E12

W22

W31

W32


. (28)

Here and subsequently we write the elastic constantCijkl in a contracted matrix notation
CKM as was done in the case of crystals, and we haveK3333= K1, K3131= K3232= K2,
R1133= R2233= R1, R3333= R2 andR2332= R3131= R3.
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Hooke’s law is

T11 = C11E11+ C12E22+ C13E33+ R1W33

T22 = C12E11+ C11E22+ C13E33+ R1W33

T33 = C13E11+ C13E22+ C33E33+ R2W33

T23 = T32 = 2C44E23+ R3W32

T31 = T13 = 2C44E31+ R3W31 (29)

T12 = T21 = 2C66E12

H33 = R1(E11+ E22)+ R2E33+K1W33

H31 = 2R3E31+K2W31

H32 = 2R3E23+K2W32.

The static equilibrium equations are

∂1(C11∂1u1+ C12∂2u2+ C13∂3u3)+ C66∂2(∂1u2+ ∂2u1)+ C44∂3(∂1u3+ ∂3u1)

+(R1+ R3)∂1∂3w3+ f1 = 0

∂2(C12∂1u1+ C11∂2u2+ C13∂3u3)+ C44∂3(∂2u3+ ∂3u2)+ C66∂1(∂2u1+ ∂1u2)

+(R1+ R3)∂2∂3w3+ f2 = 0

∂3(C13∂1u1+ C13∂2u2+ C33∂3u3)+ C44∂1(∂3u1+ ∂1u3)+ C44∂2(∂3u2+ ∂2u3)

+[R2∂3∂3+ R3(∂1∂1+ ∂2∂2)]w3+ f3 = 0

[K1∂3∂3+K2(∂1∂1+ ∂2∂2)]w3+ (R1+ R3)∂3(∂1u1+ ∂2u2)

+[R2∂3∂3+ R3(∂1∂1+ ∂2∂2)]u3+ g3 = 0.

(30)

5. Discussion and conclusions

Combining the possible seven types of point symmetry operations in 1D QCs, we have
derived all the possible 31 1D QC point groups, which can be divided into ten Laue
classes and six 1D QC systems: triclinic, monoclinic, orthorhombic, tetragonal, trigonal
and hexagonal systems. Furthermore, based on the possible translations in the periodic
x–y plane, 80 1D QC space groups have been derived.

It must be pointed out that 31 1D QC point groups are isomorphic with the 31 Shubnikov
plane point groups (Wang and Kuo 1990, Shubnikov and Belov 1964), including ten single-
coloured plane point groups, ten grey plane point groups and 11 black–white plane point
groups. These 31 Shubnikov plane point groups are in turn isomorphic with 31 diffraction
groups (Buxtonet al 1976) in convergent-beam electron diffraction. Moreover, the 80
1D QC space groups are isomorphic with 80 Shubnikov plane space groups (Wang and
Kuo 1990, Shubnikov and Belov 1964), including 17 single-coloured plane groups, 17 grey
plane groups and 46 black–white plane groups. Goodman (1984) discussed the experimental
procedure for determining these 80 Shubnikov plane groups by using convergent-beam
electron diffraction.

Janssen (1992) discussed all the possible incommensurate point groups in 3D physical
space obtained from then-dimensional (n = 4, 5, 6) periodic structure. In table 4 of this
reference, the case ford = 3 (dimension of physical space) andn = 4 (dimension ofR-
reducible hyperspace) corresponds to 1D QCs. There were 27 1D QC point groups. If one
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distinguishes between 2 and 2h,m andmh,mm2 and 2hmmh, 2/mh and 2h/m as different
point groups again 31 1D QC point groups can be obtained.

In addition, we have for the first time derived numbers of independent elastic constants,
as listed in the fourth column of table 2, and all the invariants up to quadratic order, for ten
Laue classes of 1D QCs. This is new and complements existing work on crystals.

However, because of the presence of the phason field, the elastic behaviours of QCs
are more complicated than those of crystals. An approach to phonon and phason elastic
constants was made by Jaric and Nelson (1988), who have developed a theory of the x-ray
diffuse scattering from QCs, which has already been used for ordinary crystals. Although
some preliminary experiments have been made in this field (de Boissieuet al 1995), many
details still have to be investigated, and only samples of a specific class, the icosahedral
QCs, have been studied. Further experimental measurements of diffuse scattering in QCs
are still required to obtain full information about their elastic behaviours.

Acknowledgment

This project was supported by the National Natural Science Foundation of China.

References

Bendersky L 1985Phys. Rev. Lett.55 1461
Buxton B F, Eades J A, Steeds J W and Rackham G M 1976Phil. Trans. R. Soc.A 21 171
Chen K J, Mao G M, Feng D, Yan Y, Du J F, Li Z F and Chen H 1987J. Non-Cryst. Solids97–8341
Chen K J, Mao G M, Jiang S S, Hua X, Feng D and Fritzsche H 1989J. Non-Cryst. Solids114 780
de Boissieu M, Boudard M, Hennion B, Bellissent R, Kycia S, Goldman A, Janot C and Audier M 1995Phys.

Rev. Lett.B 75 89
Ding D H, Yang W G, Hu C Z and Wang R 1993Phys. Rev.B 48 7003
Feng D, Hu A, Chen K J and Xiong S 1987Mater. Sci. Forum22–4489
Feng Y C, Lu G and Withers R L 1989J. Phys.: Condens. Matter1 3695
Goodman P 1984Acta Crystallogr.A 40 522
——1984Acta Crystallogr.A 40 635
Hahn T (ed) 1983International Tables for CrystallographyVol.A Space-Group Symmetry(Dordrecht: Reidel)
He L X, Li X Z, Zhang Z and Kuo K H 1988Phys. Rev. Lett.61 1116
Hu A, Tien C, Li X J, Wang Y H and Feng D 1986Phys. Lett.119A 313
Hu C Z, Wang R, Yang W G and Ding D H 1996Acta Crystallogr.A 52 251
Ishimasa T, Nissen H U and Fukano Y 1985Phys. Rev. Lett.55 511
Janssen T 1992Z. Kristallogr. 198 17
Jaric M V and Nelson D R 1988Phys. Rev.B 37 4458
Lele S and Mandal R K 1990 J. Non-Cryst. Solids117–8773
Levine D, Lubensky T C, Ostlund S, Ramaswamy S, Steinhardt P J and Toner J 1985Phys. Rev. Lett.54 1520
Merlin R, Bajema K, Clarke R, Juang F-Y and Bhattacharya P K 1985Phys. Rev. Lett.55 1768
Miyazaki H and Inoue M 1990J. Phys. Soc. Japan59 2536
Shechtman D, Blech I, Gratias D and Cahn J W 1984Phys. Rev. Lett.53 1951
Shubnikov A V and Belov N V 1964 Colored Symmetry(Oxford: Pergamon)
Socolar J E S1989Phys. Rev.B 39 10 519
Teodosiu C 1982Elastic Models of Crystal Defects(Berlin: Springer)
Terauchi H, Noda Y, Kamigaki K, Matsunaka S, Nakayama M, Kato H, Sano N and Yamada Y 1988J. Phys. Soc.

Japan 57 2416
Tsai A P, Sato A, Yamamoto A, Inoue A and Masumoto T 1992Japan. J. Appl. Phys.31 L970
Vainshtein B K 1981Modern Crystallography I(Berlin: Springer)
Wang N, Chen H and Kuo K H 1987Phys. Rev. Lett.59 1010
Wang R and Kuo K H 1990Symmetry Groups in Crystallography(Beijing: Science Press) (in Chinese)
Wang R, Qin C S, Lu G, Feng Y C and Xu S Q 1994Acta Crystallogr.A 50 366
Yang W G, Ding D H, Hu C Z and Wang R 1994Phys. Rev.B 49 12 656



2422 R Wang et al

Yang W G, Hu C Z, Ding D H and Wang R 1995aPhys. Rev.B 51 3906
Yang W G, Wang R, Ding D H and Hu C Z 1993Phys. Rev.B 48 6999
——1995bJ. Phys.: Condens. Matter7 7099
Yang W G, Wang R and Gui J 1996Phil. Mag. Lett.74 357
Zhang H and Kuo K H 1990Phys. Rev.B 41 3482


